学术报告三则

分类: 学术新闻    编辑: 陈亮君    发布时间: 2018-11-26    次点击

报告题目:Bisections of graphs without K_{2,l}

报 告 人:许宝刚教授   南京师范大学数学科学学院博士生导师

报告时间:2018年11月30日 上午8:50-9:50

报告地点:数学与信息学院院楼201学术报告厅

报告摘要:A bisection of a graph G is a bipartition V1, V2 of V(G) such that $||V1|-|V_2||\le 1$. In this talk, we will present some results to max bisection problems on graphs without K_{2,l}. This is a joint work with Dr.Jing Jin。

报告人简介: 许宝刚,博士,南京师范大学教授(博士生导师)。主持完成国家自然科学基金5项,参加国家自然科学基金2项。长期从事图的染色与划分问题的研究,在图的染色与划分方面做了很多有国际影响的优秀工作,解决了由国际著名图论学家所提出的一系列猜想与问题。

2006年入选江苏省省“青蓝工程程”学术带头人培养人选;2011年-2017年受聘为南京师范大学特聘教授。担任中国运筹学会常务理事(2016--)、理事(2012--);中国数学会组合数学与图论专业委员会副主任委员(2018--)、秘书长(2014--)、常务委员(2006--);中国运筹学会图论与组合分会副理事长(2011-2015)、常务理事(2006--)。

中国运筹学会会刊(英文版) Journal of the Operations Research Society of China 编委(2016--) 


报告题目:On the domination game of graphs

报 告 人:许克祥教授 南京航空航天大学数学系博士生导师 

报告时间:2018年11月30日 上午9:50-10:50

报告地点:数学与信息学院院楼201学术报告厅

报告摘要:The domination game played on a graph G consists of two players, Dominator and Staller, who alternate taking turns choosing a vertex from G such that whenever a vertex is chosen by either player, at least one additional vertex is dominated. Dominator wishes to dominate the graph in as few steps as possible, and Staller wishes to delay the process as much as possible. The game domination number $\gamma_g(G)$ (resp., $\gamma’g(G)$) is the number of vertices chosen when Dominator (resp., Staller) starts the game and both players play optimally. In the talk we report the recent results on the game domination number of graphs. In particular, we present some results on the graphs G with maximal $\gamma_g(G)$ and introduce two new related denitions to the game domination number. Moreover, some interesting open problems are proposed on the domination game of graphs.

报告人简介: 许克祥,南京航空航天大学数学系教授(博士生导师),美国数学会《Mathematical Reviews》评论员,中国运筹学会图论组合分会青年理事。研究方向图论及其应用,主持完成国家自然科学基金1项、省自然科学基金1项、中国博士后基金(面上、特别资助)2项、留学人员择优资助项目1项,现主持国家自然科学基金面上项目、国家科技部国际合作项目各1项。已发表SCI论文57篇(一作35篇),SCI他引400余次,单篇最高SCI他引58次,在Springer出版英文专著1部,在北航出版社出版教材1部。2017年被评为“良师益友--我最喜爱的导师”,2018年作为第一申报人获江苏省教育自然科学(高校自然类)三等奖1项。


报告题目:Generalized thrackles and graph embeddings

报 告 人:许怡安博士  澳大利亚西澳大学在读博士

报告时间:2018年11月30日 上午10:50-12:50

报告地点:数学与信息学院院楼201学术报告厅

报告摘要:A thrackle on a surface X is a graph of size e and order n drawn on X such that every two distinct edges of G meet exactly once either at their common endpoint, or at a proper crossing. An unsolved conjecture of Conway (1969) asserts that $e\leq n$ for every thrackle on a sphere. Until now, the best known bound is $e\leq 1.428n$. By using discharging rules we show that $e\leq 1.4n$. Furthermore we show that the following are equivalent: G has a drawing on X where every two edges meet an odd number of times (a generalized thrackle); G has a drawing on X where every two edges meet exactly once (a one-thrackle); G has a special embedding on a surface whose genus differs from the genus of X by at most one 。

报告人简介: 许怡安,西澳大学(The University of Western Australia)在读博士,至今已经发表论文多篇。


欢迎广大师生届时光临。


华南农业大学数学与信息学院数学系

联系人:魏福义,刘木伙


分享到: